Quantitative assessment of mudstone lithology using geophysical wireline logs and artificial neural networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Automated lithology prediction from PGNAA and other geophysical logs.

Different methods of lithology predictions from geophysical data have been developed in the last 15 years. The geophysical logs used for predicting lithology are the conventional logs: sonic, neutron-neutron, gamma (total natural-gamma) and density (backscattered gamma-gamma). The prompt gamma neutron activation analysis (PGNAA) is another established geophysical logging technique for in situ e...

متن کامل

Integrated Inversion of Numerical Geophysical Models Using Artificial Neural Networks

A unified modelling procedure is proposed to jointly interpret the variations observed in geophysical data and to properly take into account the relationship between the intrusive processes and the geophysical variations expected at the ground surface. We focus on the joint inversion of geophysical data by a procedure based on Artificial Neural Network (ANN) for the estimation of the volcanic s...

متن کامل

Lithology identification of aquifers from geophysical well logs and fuzzy logic analysis: Shui-Lin Area, Taiwan

The purpose of this study is to construct a fuzzy lithology system from well logs to identify formation lithology of a groundwater aquifer system in order to better apply conventional well logging interpretation in hydro-geologic studies because well log responses of aquifers are sometimes different from those of conventional oil and gas reservoirs. The input variables for this system are the g...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Petroleum Geoscience

سال: 2004

ISSN: 1354-0793,2041-496X

DOI: 10.1144/1354-079302-566